Course description

Quantization -High rate quantizers and waveform encoding - Measure, fourier series, and fourier transforms - Discrete - time fourier transforms and sampling theorem - Degrees of freedom, orthonormal expansions, and aliasing - Signal space, projection theorem, and modulation - Nyquist theory, pulse amplitude modulation (PAM), quadrature amplitude modulation (QAM), and frequency translation-Random processes

Jointly Gaussian random vectors and processes and white Gaussian noise (WGN) - Linear functionals and filtering of random processes - Review; introduction to detection - Detection for random vectors and processes - Theorem of irrelevance, M-ary detection, and coding - Baseband detection and complex Gaussian processes - Introduction of wireless communication - Doppler spread, time spread, coherence time, and coherence frequency - Discrete-time baseband models for wireless channels - Detection for flat rayleigh fading and incoherent channels, and rake receivers - Case study � code division multiple access (CDMA)

What will i learn?

Requirements

skill expert

Free

Lectures

24

Skill level

Beginner

Expiry period

Lifetime

Certificate

Yes

Related courses