Course description

The computer programs that allocate the system resources and coordinate all the details of the computer's internals is called the operating system or the kernel.

Users communicate with the kernel through a program known as the shell. The shell is a command line interpreter; it translates commands entered by the user and converts them into a language that is understood by the kernel.

  • Unix was originally developed in 1969 by a group of AT&T employees Ken Thompson, Dennis Ritchie, Douglas McIlroy, and Joe Ossanna at Bell Labs.

  • There are various Unix variants available in the market. Solaris Unix, AIX, HP Unix and BSD are a few examples. Linux is also a flavor of Unix which is freely available.

  • Several people can use a Unix computer at the same time; hence Unix is called a multiuser system.

  • A user can also run multiple programs at the same time; hence Unix is a multitasking environment.

What will i learn?

Requirements

skill expert

Free

Lectures

13

Skill level

Beginner

Expiry period

Lifetime

Certificate

Yes

Related courses

Beginner

Memory Systems

0

(0 Reviews)

Compare

Overview In this course, we first provide a comprehensive overview of memory systems, taking an approach that covers both fundamentals and recent research. We first introduce fundamental principles and ideas, covering DRAM and emerging memory technologies as well as many architectural concepts and ideas related to memory organization, memory control, processing-in-memory, and memory latency / energy / bandwidth / reliability / security / QoS. We discuss major challenges facing modern memory systems (and the computing platforms we currently design around the memory system) in the presence of greatly increasing demand for data and its fast analysis. We examine some promising research and design directions to overcome these challenges. On the research-related part of course (sprinkled across topical lectures), we discuss the following key research topics in detail, focusing on both open problems and potential solution directions: Fundamental issues in memory reliability and security and how to enable fundamentally secure, reliable, safe architectures Enabling data-centric and hence fundamentally energy-efficient architectures that are capable of performing computation near data Reducing both latency and energy consumption by tackling the fixed-latency/energy mindset Enabling emerging memory technologies Enabling predictable and QoS-aware memory systems Research challenges and opportunities in enabling emerging NVM (non-volatile memory) technologies Scaling NAND flash memory and SSDs (solid state drives) into the future

Free

22:36:25 Hours